SAT.Solve


Back to table

/*
SAT
SAT.Solve

[binary() result]=SAT.Solve(Dimacs problem, int maxCount=-1);

problem : the source of the problem in the Dimacs format.
maxCount : the number of the solution expected.
result : a list of binary number, indicates the value that satisfies the SAT problem

Solve a SAT problem described in the format of DIMACS.

If maxCount=-1, it returns all the solution.
*/
//-------------------------------------------------------------------
// examples
f=Dimacs()
{
	p cnf 0 0
	-1 -2 0
	-1 -3 0
	-2 -1 0
	-2 -3 0
	-2 -4 0
	-3 -1 0
	-3 -2 0
	-3 -4 0
	-3 -5 0
	-4 -2 0
	-4 -3 0
	-4 -5 0
	-5 -3 0
	-5 -4 0
	1 2 3 0
	2 1 3 4 0
	3 1 2 4 0
	4 2 3 5 0
	5 3 4 0
}
[result]=SAT.Solve(f,2);
Print(result);

//-------------------------------------------------------------------
// result





IsBiUnateFunctionTo IsMonotonicFunction IsSelfDualFunction IsZeroFunction AndXor List binary binaryioset bool() ToDiagram ToPOS ToXORP Diagram ExcitationTable LeastSignificantDigit MantissaToPositiveDecimal PositiveNumberToMantissa RadixFromIndex RadixToIndex To2LayerOrAnd Save ShortestInputsForTransition StateTransitionBasedly ToStateTransitionTable Compatibility FullTable GetSubTable AdjustLogicVariableCount Substitute Zero

Search This Website :

 
Buy website traffic cheap