In the computational Boolean Algebra, it is a symbolic computation. Therefore, we need an efficient and theoretical proven method to do this. In our Computational Boolean Algebra, we can always prove the correctness of the computation results.
Our Computational Boolean Algebra provides a fast computation for the operator NOT. Therefore
Hence, the worst case of our computation is only the time comsumed by the computation of 2 NOTs.
[ f ] = AndOr()
{
1,-2,3,-4,-5,-6 ;
-1,-2,3,4,-5,6 ;
-1,2,3,-4,-5,6 ;
1,-2,3,4,5,6 ;
-1,-2,-3,4,-5,6 ;
1,2,-3,4,5,6 ;
1,2,-3,-4,-5,6 ;
1,2,-3,-4,5,6 ;
1,2,-3,4,5,6 ;
-1,2,-3,-4,5,6 ;
}
[ g ] = Not(f);
Print("result:", g);
/*
The result should be :
//--------------------------------------------------//
/// Time for executing 'Not' : 312ms
"result:";
g = AndOr()
{
1,2,3;
2,-3,-6;
1,-2,-3;
-1,-2,-4;
-1,2,3,4;
-1,-2,4,5;
-1,2,3,-4,5;
-1,2,-3,4,6;
1,-2,3,4,-5;
1,-2,3,-4,5;
-1,-2,4,-5,-6;
-1,2,3,-4,-5,-6;
1,2,-3,4,-5,6;
-1,2,-3,-4,-5,6;
1,-2,3,4,5,-6;
1,-2,3,-4,-5,6;
}
*/