Huffman Simplification For Sequential Logic

For a well-defined State-Transition-Table, the Huffman Simplification is the common algorithm to simplify state-transition.

[table]=StateTransition()
{
	transitions
	{
	    1: [1] -> 1/1'b0, [2] -> 3/1'b0;
	    2: [1] -> 2/1'b1, [2] -> 4/1'b0;
	    3: [1] -> 3/1'b1, [2] -> 5/1'b0;
	    4: [1] -> 4/1'b0, [2] -> 1/1'b1;
	    5: [1] -> 5/1'b0, [2] -> 1/1'b1;
	}
}
[simtable]=Simplification.HuffmanMealy(table);

Print("result:");
Print(simtable);

/*
The result should be :
result:
StateTransition()
{
  transitions
  {
    1: [1] -> 1/1'b0, [2] -> 3/1'b0;
    2: [1] -> 2/1'b1, [2] -> 4/1'b0;
    3: [1] -> 3/1'b1, [2] -> 5/1'b0;
    4: [1] -> 4/1'b0, [2] -> 1/1'b1;
    5: [1] -> 5/1'b0, [2] -> 1/1'b1;
  }
  simplification
  {
    tabletype = "well-defined" ;
    algorithm = "equivalance" ;
    grouping
    {
      1:1;
      2:2,3;
      3:4,5;
    }
    transitions
    {
      1: [1] -> 1/1'b0, [2] -> 2/1'b0;
      2: [1] -> 2/1'b1, [2] -> 3/1'b0;
      3: [1] -> 3/1'b0, [2] -> 1/1'b1;
    }
  }
}

*/



MatchLogicFunction IsBlankFunction IsCovering IsSymmetricFunctionTo IsThresholdFunction IsUnateFunctionTo BCD bool ToShannonTree Equiv list() Count LogicScript Minus MantissaToPositiveDecimal MantissaToPositiveNumber To2LayerNor To2LayerAndXor Solve To2layerOrAnd Simplification ROBDD Full SimpleCover StateDeviceName TruthTable ShrinkLogicFunction var() XORP Zero

Search This Website :

 
Buy website traffic cheap