Huffman Simplification For Sequential Logic

For a well-defined State-Transition-Table, the Huffman Simplification is the common algorithm to simplify state-transition.

[table]=StateTransition()
{
	transitions
	{
	    1: [1] -> 1/1'b0, [2] -> 3/1'b0;
	    2: [1] -> 2/1'b1, [2] -> 4/1'b0;
	    3: [1] -> 3/1'b1, [2] -> 5/1'b0;
	    4: [1] -> 4/1'b0, [2] -> 1/1'b1;
	    5: [1] -> 5/1'b0, [2] -> 1/1'b1;
	}
}
[simtable]=Simplification.HuffmanMealy(table);

Print("result:");
Print(simtable);

/*
The result should be :
result:
StateTransition()
{
  transitions
  {
    1: [1] -> 1/1'b0, [2] -> 3/1'b0;
    2: [1] -> 2/1'b1, [2] -> 4/1'b0;
    3: [1] -> 3/1'b1, [2] -> 5/1'b0;
    4: [1] -> 4/1'b0, [2] -> 1/1'b1;
    5: [1] -> 5/1'b0, [2] -> 1/1'b1;
  }
  simplification
  {
    tabletype = "well-defined" ;
    algorithm = "equivalance" ;
    grouping
    {
      1:1;
      2:2,3;
      3:4,5;
    }
    transitions
    {
      1: [1] -> 1/1'b0, [2] -> 2/1'b0;
      2: [1] -> 2/1'b1, [2] -> 3/1'b0;
      3: [1] -> 3/1'b0, [2] -> 1/1'b1;
    }
  }
}

*/



Advanced IsBlankFunction IsInverse IsNegativeUnateFunctionTo IsPositiveUnateFunctionTo IsThresholdFunction IsUnateFunction ToAndOr MaxValue OneComplement binaryioset AddXorTerm ToDiagram ToPOS ToROBDD ToXORP Get long object real SOP Save Forwardly HuffmanMealy ShannonTree FastVerificationData Canonical StateTransition EnlargeLogicFunction Zero

Search This Website :

 
Buy website traffic cheap