Compatibility Simplification For Sequential Logic

In the reality, many sequential-logics may be defined with the state-transition-table with many unuse/irrelevant state-transitions. Let us call these as partly-defined state-transition-table.

We need the graph theory to simplify a partly-defined state-transition-table. At here, we skip the explanation of the graph theory. Nevertheless, we have a simple searching algorithm for finding the 'clique' of the state-transition-table.

[table]=StateTransition()
{
	transitions
	{
1: [1] -> 1/1'b0, [2] -> 4/1'b0, /*          */ [4] -> 2/1'b1;
2: [1] -> 3/1'b1, /*          */ /*          */ [4] -> 2/1'b1;
3: [1] -> 3/1'b1, [2] -> 4/1'b0, /*          */ [4] -> 2/1'b1;
4: [1] -> 1/1'b0, [2] -> 4/1'b0  /*          */ /*         */;
	}
}
[simtable]=Simplification.Compatibility(table);

Print("result:");
Print(simtable);

/*
The result should be :
[table]=StateTransition()
{
  transitions
  {
1: [1] -> 1/1'b0, [2] -> 4/1'b0,                [4] -> 2/1'b1;
2: [1] -> 3/1'b1,                               [4] -> 2/1'b1;
3: [1] -> 3/1'b1, [2] -> 4/1'b0,                [4] -> 2/1'b1;
4: [1] -> 1/1'b0, [2] -> 4/1'b0                              ;
  }
  simplification
  {
    tabletype = "incompletely-defined" ;
    algorithm = "compatibility" ;
    grouping
    {
      1:1,4;
      2:2,3;
    }
    transitions
    {
      1: [1] -> 1/1'b0, [2] -> 1/1'b0,                [4] -> 2/1'b1;
      2: [1] -> 2/1'b1, [2] -> 1/1'b0,                [4] -> 2/1'b1;
    }
  }
}

*/



IsInverse IsSymmetricFunction IsSymmetricFunctionTo IsZeroFunction And Binary ToBinary GrayCode OneComplement StringToBinaryNumber ToDiagram ToTruthTable DigitalSystem Email logicvardef() Not LeastSignificantDigit object OrAnd SOP To2LayerNand ShortestInputsForDistinguishTwoStates Forwardly CreateCompactTable FastVerificationData GetSubTable CreateDummyLogicFunction ShannonExpansion Substitute Zero

Search This Website :

 
Buy website traffic cheap