Compatibility Simplification For Sequential Logic

In the reality, many sequential-logics may be defined with the state-transition-table with many unuse/irrelevant state-transitions. Let us call these as partly-defined state-transition-table.

We need the graph theory to simplify a partly-defined state-transition-table. At here, we skip the explanation of the graph theory. Nevertheless, we have a simple searching algorithm for finding the 'clique' of the state-transition-table.

[table]=StateTransition()
{
	transitions
	{
1: [1] -> 1/1'b0, [2] -> 4/1'b0, /*          */ [4] -> 2/1'b1;
2: [1] -> 3/1'b1, /*          */ /*          */ [4] -> 2/1'b1;
3: [1] -> 3/1'b1, [2] -> 4/1'b0, /*          */ [4] -> 2/1'b1;
4: [1] -> 1/1'b0, [2] -> 4/1'b0  /*          */ /*         */;
	}
}
[simtable]=Simplification.Compatibility(table);

Print("result:");
Print(simtable);

/*
The result should be :
[table]=StateTransition()
{
  transitions
  {
1: [1] -> 1/1'b0, [2] -> 4/1'b0,                [4] -> 2/1'b1;
2: [1] -> 3/1'b1,                               [4] -> 2/1'b1;
3: [1] -> 3/1'b1, [2] -> 4/1'b0,                [4] -> 2/1'b1;
4: [1] -> 1/1'b0, [2] -> 4/1'b0                              ;
  }
  simplification
  {
    tabletype = "incompletely-defined" ;
    algorithm = "compatibility" ;
    grouping
    {
      1:1,4;
      2:2,3;
    }
    transitions
    {
      1: [1] -> 1/1'b0, [2] -> 1/1'b0,                [4] -> 2/1'b1;
      2: [1] -> 2/1'b1, [2] -> 1/1'b0,                [4] -> 2/1'b1;
    }
  }
}

*/



IsBlankFunction IsPositiveUnateFunctionTo IsSymmetricFunctionTo IsUnateFunctionTo AbsoluteExpression binaryioset Convert ToTruthTable list() logicvardef() long() minterm() minterm Minus PositiveIntegerToMantissa Print To2LayerOrAnd ToFullAnd InputVariables Forwardly FullTable BestVariableOrder RandomGenerate Utility AdjustLogicVariableCount CreateDummyLogicFunction EnlargeLogicFunction Substitute var() Zero

Search This Website :

 
Buy website traffic cheap