Compatibility Simplification For Sequential Logic

In the reality, many sequential-logics may be defined with the state-transition-table with many unuse/irrelevant state-transitions. Let us call these as partly-defined state-transition-table.

We need the graph theory to simplify a partly-defined state-transition-table. At here, we skip the explanation of the graph theory. Nevertheless, we have a simple searching algorithm for finding the 'clique' of the state-transition-table.

[table]=StateTransition()
{
	transitions
	{
1: [1] -> 1/1'b0, [2] -> 4/1'b0, /*          */ [4] -> 2/1'b1;
2: [1] -> 3/1'b1, /*          */ /*          */ [4] -> 2/1'b1;
3: [1] -> 3/1'b1, [2] -> 4/1'b0, /*          */ [4] -> 2/1'b1;
4: [1] -> 1/1'b0, [2] -> 4/1'b0  /*          */ /*         */;
	}
}
[simtable]=Simplification.Compatibility(table);

Print("result:");
Print(simtable);

/*
The result should be :
[table]=StateTransition()
{
  transitions
  {
1: [1] -> 1/1'b0, [2] -> 4/1'b0,                [4] -> 2/1'b1;
2: [1] -> 3/1'b1,                               [4] -> 2/1'b1;
3: [1] -> 3/1'b1, [2] -> 4/1'b0,                [4] -> 2/1'b1;
4: [1] -> 1/1'b0, [2] -> 4/1'b0                              ;
  }
  simplification
  {
    tabletype = "incompletely-defined" ;
    algorithm = "compatibility" ;
    grouping
    {
      1:1,4;
      2:2,3;
    }
    transitions
    {
      1: [1] -> 1/1'b0, [2] -> 1/1'b0,                [4] -> 2/1'b1;
      2: [1] -> 2/1'b1, [2] -> 1/1'b0,                [4] -> 2/1'b1;
    }
  }
}

*/



IsCovering IsNegativeUnateFunctionTo IsPositiveUnateFunctionTo BDD Binary BCD NineComplement OneComplement StringToBinaryNumber TwoComplement binaryioset ToSOP Diagram DiagramGateName Dimacs Equiv logicvardef() minterm Nor Not RadixToIndex real To2LayerAndXor InputVariables CreateCompactTable ShannonTree Canonical IndependentBase ShrinkLogicFunction Zero

Search This Website :

 
Buy website traffic cheap